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ABSTRACT 

The present paper is a practical guide on hypothesis testing. It covers various statistical inference methods that are 
widely applied in research studies. To avoid narrowing down statistical problems to p-values, we discuss common 
misuses and misinterpretations of statistical tests and emphasize the importance of interpreting results in the context 
of the study design, previous knowledge, and complementary analyses. We provide a toolkit that reinforces good 
scientific practice. 
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coefficient.

RESUMEN 

Este artículo es una guía práctica sobre la prueba de hipótesis. Cubre varios métodos de inferencia estadística utiliza-
dos extensamente en estudios de investigación para evaluar supuestos. Con el objetivo de evitar reducir problemas 
estadísticos a los valores p, discutimos aplicaciones e interpretaciones erróneas de las pruebas estadísticas y enfa-
tizamos la importancia de interpretar los resultados en el contexto del diseño del estudio, el conocimiento previo y 
los análisis complementarios. Así, el artículo proporciona herramientas que promueven el uso de buenas prácticas 
científicas.
 
Palabras clave: prueba de hipótesis, valor p, significancia estadística, prueba z, prueba t, ANOVA, chi-cuadrado, 
prueba F, coeficiente de correlación.
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1. INTRODUCTION

Hypothesis testing evaluates research 
claims or assumptions about population 
characteristics given observed data. Based 
on the scientific method, it provides a stan-
dardized process for researchers to perform 
statistical analyses that evaluate the stren-
gth of evidence for a question of interest. 
However, statistical significance in hypothe-
sis testing can be often misunderstood and 
misused in the research community. Much 
of the blame is placed on traditional statis-
tical training and textbooks that reduce sta-
tistical problems to p-values. The present 
paper aims to provide a critical and prac-
tical guide on hypothesis testing methods 
by drawing from Shahbaba’s introductory 
book to biostatistics using R10, the American 
Statistical Association’s (ASA) statement on 
p-values11, and Greenland et al.’s guide to 
misinterpretations of statistical tests, p-va-
lues, confidence intervals, and power6. 

2. STEPS TO CONDUCT HYPOTHE-
SIS TESTING
Hypothesis testing consists of the following 
steps:

1. Formulate the null and alternative hypo-
theses

2. Set the significance level

3. Perform the appropriate statistical test

4. Determine statistical significance and 
reach conclusions

2.1 Formulate the Null and Alternative 
Hypotheses

Hypothesis testing provides researchers 
with a testable framework to assess sta-
tements about their scientific question. 
However, each framework relies on various 
assumptions about how the data was co-
llected and analyzed, and how the results 
were interpreted and reported. These as-
sumptions are embodied in all statistical 
models, which, in turn, support statistical 
methods. As noted by Greenland et al. and 

Wassertain et al., there are important con-
siderations that researchers must take into 
account when building statistical models6,11. 
First, although a model is supposed to re-
present the data variability, the assumptions 
used to build it are not always realistic or 
justified. Second, the model might not have 
the adequate scope to represent both the 
observed and hypothetical alternative data. 
Third, the model might be too abstract or 
not represented at all in a study, leading re-
searchers and readers to overlook assump-
tions6,11. 

Despite these limitations, assumptions un-
derpin all statistical methods and interpreta-
tions. A key assumption in statistical testing 
is the definition of the null and alternative 
hypotheses. The null hypothesis (deno-
ted H0) of a study is a statement about a 
non-existing association between the me-
asured variables. H0 states that the popu-
lation parameter is equal to a prespecified 
value such as 0, or that two population pa-
rameters are equal.

Contrary to the null hypothesis, the alter-
native hypothesis (denoted HA) is a state-
ment about an existing relationship between 
the measured variables. HA can be written 
as a one-sided or two sided comparison. 
A one-sided HA is unidirectional and des-
cribes the case when the population para-
meter of interest is greater or lower than a 
prespecified value or another population 
parameter. A two-sided HA is bi-directional 
and describes the case when the popula-
tion parameter of interest is not equal to a 
prespecified value or to another population 
parameter. 

2.2 Set the Significance Level

The significance level, α, is a pre-specified 
probability threshold below which resear-
chers can reject the null hypothesis. The 
most common value of α is 0.05. However, 
depending on the scope and aim of the 
study, different levels of significance may be 
set such as 0.1 and 0.01. The significance 
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level represents the probability we place on 
a test for incorrectly rejecting H0, which is 
called the type I error of the test10. 

Readers should not confuse the significan-
ce level with the p-value6. The significance 
level is a cut-off value set prior to the statis-
tical test. The p-value is often referred to as 
the “observed significance level” because it 
is used to assess whether results are signifi-
cant or not assuming H0 to be true. Refer to 
Section 2.4 that provides a discussion about 
p-values. 

2.3 Perform the Appropriate Statistical 
Test

The choice of running a particular hypothe-
sis test depends on the type of data collec-
ted. We can run univariate and multivariate 
tests for continuous and/or categorical va-
riables. Many of these tests are covered in 
Sections 3 and 4. 

The type of test determines the test statis-
tic. The test statistic is a summary measure 
computed from the sample data to quanti-
fy the distance between the observed data 
and the predicted model under H06. This 
measure is a random variable, meaning that 
we may get different estimates each time 
we take a different sample from the popula-
tion. If the null hypothesis is indeed true, we 
would expect the values to be close to the 
known distribution of H0, and vice versa10.  
In reality, we have only one estimate for the 
test statistic and the further it is from the va-
lue stated by H0, the stronger the evidence 
is against it.

2.4 Determine Statistical Significance and 
Reach Conclusions

A measure that is widely (and often inade-
quately) reported alongside the test statis-
tic is the p-value. As defined by Greenland 
et al., the p-value is the probability that the 
chosen test statistic would have been at 
least as large as its observed value if every 
model assumption were correct, including 
H06. In broader terms, the p-value mea-

sures the fit of the model to the observed 
data6,11.

It is important to note that the p-value is 
not the probability that the null hypothesis 
is true6,11. In fact, the p-value already assu-
mes H0 to be the truth. Therefore, if all the 
model assumptions are correct, a p-value 
that is smaller than the significance level, 
say α=0.05, suggests that the data does not 
support H0. In such a case, the null hypo-
thesis is rejected and the result is deemed 
“statistically significant”. In contrast, a p-va-
lue that is larger than α suggests that the 
observed data was generated according to 
the null. Hence, the null is not rejected and 
the result is deemed “nonsignificant”.  Fai-
ling to reject H0 simply means that the re-
sults are inconclusive rather than implying 
that the null hypothesis is true10. 

A fundamental disclaimer when discussing 
p-values is that statistically significant re-
sults may not be reproducible or replicable. 
Large random errors or violated assump-
tions may lead to unreliable p-values and, 
hence, invalid claims6.  This is why the p-va-
lue should not be the only means by which 
we evaluate research questions. Instead, as 
the American Statistical Association recom-
mends, we must also consider prior knowle-
dge, the design of the study, the validity of 
the model assumptions, and the quality of 
the measurements11. Only then can we claim 
scientific findings that inform business and 
policy decisions.

3. UNIVARIATE HYPOTHESIS TESTING

After covering the basic concepts and steps 
required to conduct hypothesis testing, we 
present a practical guide to run tests for 
one or various population parameters in R8. 
The significance level set for all the tests is 
α=0.05. To exemplify the tests, we analyze 
the dataset called “Survival from Malignant 
Melanoma” (referred to as melanoma mo-
ving forward). The dataset, publicly available 
in the “boot” package in R, contains demo-
graphic and tumor characteristics of patients 
with malignant melanoma in Denmark¹. 

Zhao I, Velasco MC



MetroCiencia  VOL. 30 Nº 1 (2022) 8787

3.1 One Population Mean

The one-sample t-test is used to test if the 
population mean of a continuous variable is 
significantly different than a hypothesized 
value, assuming that the population varian-
ce is unknown. This test uses the t-statistic, 
which is comparable to the z-statistic (also 
called z-score) when the sample size is lar-
ge or the population variance is known. 

The primary assumptions of the t-test are 
the following7: 

1. Observations are independent.

2. Observations are randomly sampled 
from the population.

3. Distribution of the population is approxi-
mately normal.

4. The population variance is unknown.

A melanoma tumor thickness greater than 4 
mm is associated with a higher chance of 

treatment recurrence2. To test if the popula-
tion mean of tumor thickness (denoted as µ) 
is greater than 4 mm in the melanoma study, 
we set a one-sided alternative hypothesis. 
Accordingly, the null and alternative hypo-
theses are:

H0: µ ≤ 4. The population mean tumor thick-
ness is less than or equal to 4 mm.

HA: µ > 4. The population mean tumor thic-
kness is greater than 4 mm.

We then run a one-sided, one-sample t-test 
with the R code shown below. By default, 
the t.test function assumes a hypothesized 
mean of 0, computes a two-tailed hypothe-
sis test, and estimates the 95% confidence 
interval for the population mean. The argu-
ments mu (hypothesized population mean), 
alternative (one or two sided HA), and conf.
level (confidence level of interval) can be 
easily modified as shown in the code be-
low.

 

# run a one-sided, one-sample t-test 
t.test(melanoma$thickness, mu = 4, alternative = "greater", 
conf.level = 0.95) 
 
One Sample t-test 
 
data:  melanoma$thickness 
t = -5.2258, df = 204, p-value = 1 
alternative hypothesis: true mean is greater than 4 
95 percent confidence interval: 
 2.578318      Inf 
sample estimates: 
mean of x  
 2.919854  

 
The sample mean of tumor thickness is 2.9 millimeters and the one-sided t-test computes 
a p-value of 1. Since the p-value is greater than the significance level of 𝛼𝛼 = 0.05, we fail 
to reject the null hypothesis and cannot conclude that the mean tumor thickness is greater 
than 4. This is corroborated by the 95% confidence interval; it  suggests that we are 95% 
confident that the true population mean is greater than or equal to 2.58, which includes 
the hypothesized value of 4.  
 
 
3.2 One Population Proportion 
 
The one-sample proportion test evaluates if the population proportion of a group from 
a categorical variable is significantly different than a given value. For binary variables, the 
population proportion is the same as the population mean. Therefore, we can run a z-test 
in which the test statistic is the z-score.  
 
The assumptions for a proportion test are the following 4: 
  

1. The variable of interest is categorical with two groupings 
2. Observations are randomly sampled from the population 
3. Assuming n is the sample size and p is the proportion, np ≥ 10 and n(1-p) ≥ 10.  

The sample mean of tumor thickness is 
2.9 millimeters and the one-sided t-test 
computes a p-value of 1. Since the p-va-
lue is greater than the significance level of 
α=0.05, we fail to reject the null hypothesis 
and cannot conclude that the mean tumor 
thickness is greater than 4. This is corro-
borated by the 95% confidence interval; it  

suggests that we are 95% confident that 
the true population mean is greater than or 
equal to 2.58, which includes the hypothe-
sized value of 4. 

3.2 One Population Proportion

The one-sample proportion test evaluates 
if the population proportion of a group from 
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a categorical variable is significantly diffe-
rent than a given value. For binary varia-
bles, the population proportion is the same 
as the population mean. Therefore, we can 
run a z-test in which the test statistic is the 
z-score. 

The assumptions for a proportion test are 
the following4:

1. The variable of interest is categorical 
with two groupings

2. Observations are randomly sampled 
from the population

3. Assuming n is the sample size and p is 
the proportion, np ≥ 10 and n(1-p) ≥ 10.  
This assumption allows us to rely on the 
Central Limit Theorem and assume that 
the distribution of the sample proportion 
(i.e. the sample mean for a binary varia-
ble) is normal. If this assumption is not 
met, a binomial test can be run instead. 

To test if the proportion of males in the me-
lanoma population study is different than 
50%, we set a two-tailed alternative hypo-
thesis. Let p represent the population pro-
portion of males. We define the null and al-
ternative hypotheses as:

H0: p =  0.5. The population proportion of 
males in our study is 0.5.

HA: p ≠  0.5. The population proportion of 
males in our study is not 0.5.

We then run a two-sided, one-sample pro-
portion test with the R code shown below. 
By default, the prop.test function assumes a 
hypothesized proportion of 0.5, computes a 
two-tailed hypothesis test, and estimates the 
95% confidence interval for the population 
proportion. The arguments x (the number of 
observations of the grouping of interest), n 
(total number of observations), p (the hypo-
thesized proportion of the grouping of inte-
rest), alternative (one or two sided Ha), and 
conf.level (confidence level of the interval) 
can be easily modified as shown in the code. 

# number of subjects who are males (sex → 1=male, 0=female) 
n_group = sum(melanoma$sex == 1) 
# total number of nonmissing observations 
n_samples = length(!is.na(melanoma$sex))  
 
# run a two-sided, one-sample proportion test 
# if the variable of interest had a small sample size, the correct 
argument can be set to TRUE to apply the Yate’s continuity correction 
 
prop.test(x = n_group, n = n_samples, p = 0.5,  
alternative = "two.sided", conf.level = 0.95, correct = FALSE) 
 
 1-sample proportions test without continuity correction 
 
data:  n_group out of n_samples, null probability 0.5 
X-squared = 10.776, df = 1, p-value = 0.001028 
alternative hypothesis: true p is not equal to 0.5 
95 percent confidence interval: 
 0.3214346 0.4535143 
sample estimates: 
        p  
0.3853659  

 
The sample proportion of males is 39% and the two-sided, one-sample proportion test for 
males computes a p-value of 0.0010. The p-value is less than the significance level of 
𝛼𝛼 = 0.05, leading us to reject H0 and conclude that the proportion of males is different 
than 0.5. The 95% confidence interval is interpreted as having 95% confidence that the 
true population proportion is between 0.32 and 0.45. While the sample proportion is 
contained in the confidence interval, the hypothesized value for the population parameter 
p =  0.5 is not, suggesting that H0 can be rejected.  
 
 
3.3 One Population Variance 
 
The one-sample chi-squared test for variance is used to test if the variance of a 
numeric variable is the same or significantly different than a given value. The assumptions 
for this test are the following 3: 
 

1. Observations are independent 
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The sample proportion of males is 39% and 
the two-sided, one-sample proportion test 
for males computes a p-value of 0.0010. 
The p-value is less than the significance 
level of α=0.05, leading us to reject H0 
and conclude that the proportion of males 
is different than 0.5. The 95% confidence 
interval is interpreted as having 95% confi-
dence that the true population proportion is 
between 0.32 and 0.45. While the sample 
proportion is contained in the confidence 
interval, the hypothesized value for the po-
pulation parameter p =  0.5 is not, sugges-
ting that H0 can be rejected. 

3.3 One Population Variance

The one-sample chi-squared test for va-
riance is used to test if the variance of a 
numeric variable is the same or significant-
ly different than a given value. The assump-
tions for this test are the following3:

1. Observations are independent.

2. Observations are randomly sampled 
from the population.

3. Distribution of the sample data is 
approximately normal.

To test if the variance of age in the melano-
ma population study is different than 169, 
we set a two-tailed alternative hypothesis. 
Let σ2 represent the population variance 
of age. We define the null and alternative 
hypotheses as:

H0: σ2 = 169. The population variance of 
age in our study is 169.

HA: σ2 ≠  169. The population variance of 
age in our study is not 169.

We then run a two-sided, one-sample 
chi-squared test for variance with the R 
code shown below. By default, the varTest 
function from the EnvStats package assu-
mes a hypothesized population variance of 
1, computes a two-tailed hypothesis test, 
and estimates the 95% confidence interval 
for the population variance. The arguments 
sigma.squared (hypothesized population 
variance), alternative (one or two sided 
HA), and conf.level (confidence level of in-
terval) can be easily modified as shown in 
the code below.

 

2. Observations are randomly sampled from the population 
3. Distribution of the sample data is approximately normal 

 
To test if the variance of age in the melanoma population study is different than 169, we 
set a two-tailed alternative hypothesis. Let σ2 represent the population variance of age. 
We define the null and alternative hypotheses as: 
 
H0: σ2 = 169. The population variance of age in our study is 169. 
HA: σ2 ≠  169. The population variance of age in our study is not 169. 
 
We then run a two-sided, one-sample chi-squared test for variance with the R code shown 
below. By default, the varTest function from the EnvStats package assumes a 
hypothesized population variance of 1, computes a two-tailed hypothesis test, and 
estimates the 95% confidence interval for the population variance. The arguments 
sigma.squared (hypothesized population variance), alternative (one or two sided HA), and 
conf.level (confidence level of interval) can be easily modified as shown in the code below. 
 

# install.packages("EnvStats") 
library(EnvStats) 
 
# run a two-sided, one-sample chi-squared test 
varTest(melanoma$age, sigma.squared = 169, alternative = "two.sided", 
conf.level = 0.95) 
 
 Chi-Squared Test on Variance 
 
data:  melanoma$age 
Chi-Squared = 335.51, df = 204, p-value = 3.59e-08 
alternative hypothesis: true variance is not equal to 169 
95 percent confidence interval: 
 231.0098 340.8788 
sample estimates: 
variance  
 277.946  

 
The sample variance of age is 277.95 and the two-sided, one-sample chi-squared test for 
variance computes a p-value of 3.59e-8. Since the p-value is less than the significance 
level of 𝛼𝛼 = 0.05, we reject the null hypothesis and conclude that the variance in age is 
different than 169. This is corroborated by the 95% confidence interval; it  suggests that 

ARTÍCULOS ORIGINALES - ESTADÍSTICA AL DÍA: Hypothesis Testing



MetroCiencia VOL. 30 Nº 1 (2022)9090

The sample variance of age is 277.95 and 
the two-sided, one-sample chi-squared test 
for variance computes a p-value of 3.59e-
8. Since the p-value is less than the signi-
ficance level of α=0.05, we reject the null 
hypothesis and conclude that the variance 
in age is different than 169. This is corrobo-
rated by the 95% confidence interval; it  su-
ggests that we are 95% confident that the 
true population variance of age is between 
231.01 and 340.88, which does not include 
the hypothesized value of 169.

4. MULTIVARIATE HYPOTHESIS 
TESTING

So far, we have covered univariate hypo-
thesis testing. This section focuses on tests 
for multiple population parameters. 

4.1 Two Population Variances

The F-test is used to test if the variance of 
two groups are equal and uses the F-statis-
tic. This test is particularly useful for chec-
king the equal variance assumption for a 
two-sample t-test. The assumptions for the 
F-test are the following4:

1. Observations are independent.

2. Observations are randomly sampled 
from the population.

3. Distribution of the sample data is 
approximately normal.

Below we illustrate an F-test comparing 
tumor thickness variance between males 
and females. Using a two-tailed alternative 
hypothesis, we test if the tumor thickness 
population variance of males (σM2) is diffe-
rent from females (σF2). We define the null 
and alternative hypotheses as:

H0: σM2 = σF2. The population tumor thic-
kness variance is the same for males and 
females.

HA: σM2 ≠ σF2. The population tumor thic-
kness variance is different between males 
and females.

We then run a two-sided F-test with the R 
code shown below. By default, the var.test 
function computes a two-tailed hypothesis 
test and estimates the 95% confidence in-
terval for the population mean. The argu-
ments x (continuous variable ~ categori-
cal variable), and data (name of dataset) 
are used to specify the dataset variables 
to test. We also have the option to specify 
a one or two-sided alternative hypothesis 
and the confidence level.

 

 

# run a two-sided, two-sample F-test 
var.test(thickness ~ sex, data = melanoma, alternative = "two.sided", 
conf.level = 0.95) 
 
 F test to compare two variances 
 
data:  thickness by sex 
F = 0.76195, num df = 125, denom df = 78, p-value = 0.1748 
alternative hypothesis: true ratio of variances is not equal to 1 
95 percent confidence interval: 
 0.5047001 1.1287015 
sample estimates: 
ratio of variances  
         0.7619462 

 
The ratio of the female/male age variance is 0.76 and the two-sided, two-sample F-test 
computes a p-value of 0.1748. Since the p-value is greater than than the significance 
level of 𝛼𝛼 = 0.05, we fail to reject the null hypothesis and cannot conclude that the tumor 
thickness variance is different between males and females. This is corroborated by the 
95% confidence interval since it includes a ratio of 1. The confidence interval suggests 
that we are 95% confident that the true ratio of male vs. female age variance of our 
population is between 0.50 and 1.13.  
 
 
4.2 Linear Relationship Between Two Numerical Variables 
 
The Pearson’s correlation coefficient is used to test if two numeric variables are linearly 
associated and, if they are, the strength of their association. The correlation coefficient 
value is always between -1 and 1, where negative values indicate an inverse relationship 
and positive values indicate a positive relationship. By rule of thumb, absolute values 
between 0 to 0.39 indicate a weak relationship, 0.4 to 0.69 indicate a moderately strong 
relationship, and 0.7 to 1 indicate a strong relationship 9. Pearson’s correlation 
coefficient only applies to linear relationships and cannot capture non-linearity.  
 
The assumptions for the Pearson’s correlation test are the following 9: 
 

1. Observations are independent 
2. Observations are randomly sampled from the population 
3. Distribution of both numeric variables are approximately normal 
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The ratio of the female/male age varian-
ce is 0.76 and the two-sided, two-sample 
F-test computes a p-value of 0.1748. Since 
the p-value is greater than than the signifi-
cance level of α=0.05, we fail to reject the 
null hypothesis and cannot conclude that 
the tumor thickness variance is different 
between males and females. This is co-
rroborated by the 95% confidence interval 
since it includes a ratio of 1. The confiden-
ce interval suggests that we are 95% con-
fident that the true ratio of male vs. female 
age variance of our population is between 
0.50 and 1.13. 

4.2 Linear Relationship Between Two Nu-
merical Variables

The Pearson’s correlation coefficient is used 
to test if two numeric variables are linearly 
associated and, if they are, the strength 
of their association. The correlation coe-
fficient value is always between -1 and 1, 
where negative values indicate an inverse 
relationship and positive values indicate a 
positive relationship. By rule of thumb, ab-
solute values between 0 to 0.39 indicate 
a weak relationship, 0.4 to 0.69 indicate a 
moderately strong relationship, and 0.7 to 
1 indicate a strong relationship9. Pearson’s 
correlation coefficient only applies to linear 
relationships and cannot capture non-li-
nearity. 

The assumptions for the Pearson’s correla-
tion test are the following9:

1. Observations are independent.

2. Observations are randomly sampled 
from the population.

3. Distribution of both numeric variables 
are approximately normal.

4. Observations are linearly associated.

5. There are no extreme outliers.

6. Each observation should have a pair of 
values that are non-missing.

Below we illustrate computing the Pear-
son’s correlation coefficient between tumor 
thickness and age. Using a two-tailed alter-
native hypothesis, we test if the correlation 
coefficient (ρ) is significantly different from 
0. We define the null and alternative hypo-
theses as:

H0: ρ = 0. The correlation between tumor 
thickness and age is 0.

HA: ρ ≠ 0. The correlation between tumor 
thickness and age is not 0.

We then run a correlation test with the code 
shown below. By default, the cor.test func-
tion computes a two-tailed hypothesis test 
and estimates the 95% confidence interval 
for Pearson’s correlation coefficient. The ar-
guments x and y are used to specify the 
two variables to test. We also have the op-
tion to specify a one or two-sided alternati-
ve hypothesis and the confidence level.

 

4. Observations are linearly associated 
5. There are no extreme outliers 
6. Each observation should have a pair of values that are non-missing 

 
Below we illustrate computing the Pearson’s correlation coefficient between tumor 
thickness and age. Using a two-tailed alternative hypothesis, we test if the correlation 
coefficient (ρ) is significantly different from 0. We define the null and alternative 
hypotheses as: 
 
H0: ρ = 0. The correlation between tumor thickness and age is 0. 
HA: ρ ≠ 0. The correlation between tumor thickness and age is not 0. 
 
We then run a correlation test with the code shown below. By default, the cor.test function 
computes a two-tailed hypothesis test and estimates the 95% confidence interval for 
Pearson’s correlation coefficient. The arguments x and y are used to specify the two 
variables to test. We also have the option to specify a one or two-sided alternative 
hypothesis and the confidence level. 
 

# run a two-sided, two-sample correlation test 
cor.test(melanoma$thickness, melanoma$age, alternative = "two.sided", 
conf.level = 0.95) 
 
 Pearson's product-moment correlation 
 
data:  melanoma$thickness and melanoma$age 
t = 3.0981, df = 203, p-value = 0.002223 
alternative hypothesis: true correlation is not equal to 0 
95 percent confidence interval: 
 0.0777074 0.3396259 
sample estimates: 
      cor  
0.2124798  

 
The output of the correlation test computes a Pearson’s correlation coefficient of 0.21 and 
a p-value of 0.0022. Since the p-value is less than than the significance level of 𝛼𝛼 = 0.05, 
we reject the null hypothesis and conclude that the relationship between tumor thickness 
and age is statistically significant. The 95% confidence interval suggests that we are 95% 
confident that the true correlation coefficient is between 0.08 and 0.34. Note that the lower 
bound is close to 0, indicating that the linear relationship is weak.  
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The output of the correlation test computes a 
Pearson’s correlation coefficient of 0.21 and 
a p-value of 0.0022. Since the p-value is less 
than than the significance level of α=0.05, we 
reject the null hypothesis and conclude that the 
relationship between tumor thickness and age 
is statistically significant. The 95% confidence 
interval suggests that we are 95% confident 
that the true correlation coefficient is between 
0.08 and 0.34. Note that the lower bound is clo-
se to 0, indicating that the linear relationship is 
weak. 

4.3 Population Means of Two Groupings

To test if the mean of a variable of interest in one 
group is different than that of another group, we 
use a two-sample t-test. 

The assumptions for a two-sample t-test are7:

1. Observations are independent.

2. Observations are randomly sampled from 
their populations.

3. Distributions of the populations are approxi-
mately normal.

4. Categorical variable has only two grou-
pings.

5. Equal or unequal variances between the 
groupings. As described below, the testing 
method changes based on the equality of 
variances assumption.

Below we illustrate a two-sided, two-sample 
t-test comparing tumor thickness between ma-
les and females, assuming equal variances be-
tween the groupings. Using a two-tailed alter-
native hypothesis, we test if the tumor thickness 
population mean of males (μ

m
) is different from 

females (μ
f
). We define the null and alternative 

hypotheses as:

Ho: μ
m
 = μ

f
. The population mean tumor thick-

ness is the same between males and females.

Ha: μ
m
  ≠ μ

f
. The population mean tumor thick-

ness is different between males and females.

We then run a two-sided, two-sample t-test with 
the code shown below. By default, the t.test 
function computes a two-tailed hypothesis test 
and estimates the 95% confidence interval for 
the population mean difference. The arguments 
x (continuous variable ~ categorical variable), 
and data (name of dataset) are used to speci-
fy the dataset variables to test. We also have 
the option to specify a one or two-sided alter-
native hypothesis and the confidence level. In 
a two-sample t-test, it is necessary to specify 
whether the variances of the groupings are 
equal or unequal. The default value is var.equal 
= FALSE. In Section 4.1 we were not able to 
conclude that the tumor thickness variance is 
different between males and females. Hence, 
we set var.equal = TRUE to compute a pooled 
variance that estimates the common variance 
between the two groupings.  

# run a two-sided, two-sample t-test, with equal variances.  
# (sex → 1=male, 0=female) 
t.test(thickness ~ sex, data = melanoma, alternative = "two.sided", 
conf.level = 0.95, var.equal = TRUE, paired = FALSE) 
 
 Two Sample t-test 
 
data:  thickness by sex 
t = -2.6883, df = 203, p-value = 0.007777 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 -1.9496125 -0.2998089 
sample estimates: 
mean in group 0 mean in group 1  
       2.486429        3.611139  

 
The sample mean of tumor thickness is 2.49 millimeters among females and 3.61 
millimeters among males, rendering a sample difference of -1.12. The output of the two-
sided t-test assuming equal variances computes a p-value of 0.0078. Since the p-value 
is less than the significance level of 𝛼𝛼 = 0.05, we reject the null hypothesis and conclude 
that there exists a difference in tumor thickness between males and females. This is 
corroborated by the 95% confidence interval; it  suggests that we are 95% confident that 
the true mean difference is between -1.95 and -0.30, which does not include the null 
hypothesized difference of zero. 
 
The two-sample t-test described above is based on the assumption that the two groupings 
are unrelated (independent). When assessing relationships between two groups, we hope 
that they are comparable in all their characteristics except for the one we are interested 
in. Because this is often not guaranteed, an option is to pair each individual in one group 
with an individual in the other group to ensure that the paired individuals are similar. The 
paired t-test takes into account the pairing of observations and, therefore, does not 
assume independence between the groups 10. This test is also applied when we are 
comparing the same group of people before or after an intervention, meaning that the two 
groups include the same participants under different conditions. Using the difference 
between the paired observations, the hypothesis testing problem reduces to a single 
sample t-test problem. A paired t-test can be computed setting the paired argument equal 
to TRUE in the t.test function in R. 
 
 
4.4 Population Proportions of Two or More Groupings  
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The sample mean of tumor thickness is 2.49 
millimeters among females and 3.61 millime-
ters among males, rendering a sample diffe-
rence of -1.12. The output of the two-sided 
t-test assuming equal variances computes a 
p-value of 0.0078. Since the p-value is less 
than the significance level of α=0.05, we re-
ject the null hypothesis and conclude that 
there exists a difference in tumor thickness 
between males and females. This is corro-
borated by the 95% confidence interval; it  
suggests that we are 95% confident that the 
true mean difference is between -1.95 and 
-0.30, which does not include the null hypo-
thesized difference of zero.

The two-sample t-test described above 
is based on the assumption that the two 
groupings are unrelated (independent). 
When assessing relationships between two 
groups, we hope that they are comparable 
in all their characteristics except for the one 
we are interested in. Because this is often 
not guaranteed, an option is to pair each in-
dividual in one group with an individual in 
the other group to ensure that the paired in-
dividuals are similar. The paired t-test takes 
into account the pairing of observations and, 
therefore, does not assume independen-
ce between the groups10. This test is also 
applied when we are comparing the same 
group of people before or after an interven-
tion, meaning that the two groups include 
the same participants under different con-
ditions. Using the difference between the 
paired observations, the hypothesis testing 
problem reduces to a single sample t-test 
problem. A paired t-test can be computed 
setting the paired argument equal to TRUE 
in the t.test function in R.

4.4 Population Proportions of Two or More 
Groupings 

To test the association between two catego-
rical variables, each with two or more grou-
pings, we use the chi-squared (X2) test of 
independence. The chi-squared test statis-
tic is computed by building a contingency 
table that compares the actual versus the 

expected counts of each combination of the 
groupings. If both variables are indepen-
dent, the relative frequencies of the grou-
pings of the first categorical variable are ex-
pected to be similar across the groupings of 
the second categorical variable. 

The assumptions for the chi-squared test of 
independence test are10: 

1. Observations are independent

2. Observations are randomly sampled 
from their populations

3. The frequencies in each cell of the con-
tingency table should be at least five. 
This assumption allows us to rely on the 
Central Limit Theorem and assume that 
the distributions of the sample propor-
tions (i.e. the sample means for binary 
variables) are approximately normal.

Below we illustrate a chi-squared test com-
paring tumor thickness between males and 
females, assuming equal variances between 
the groupings. Using a two-tailed alternative 
hypothesis, we test if the proportion of ulcer 
indication in males (p

m
) is different than in 

females (p
m
). We define the null and alterna-

tive hypotheses as:

Ho: p
m = p

f
. The proportion of ulcer indication 

is the same between males and females.

Ha: p
m ≠ p

f
. The proportion of ulcer indication 

is different between males and females.

We then run a two-sided, two-sample 
chi-squared test with the code shown be-
low. First, we use the table function in R to 
verify the assumption of at least 5 observa-
tions per group combination. The chisq.test 
function uses as input the frequency table 
created in the first step of the code. 
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# compute two-sample frequency table 
# sex: 1=male, 0=female; ulcer: 1=present, 0=absent 
table(melanoma$sex, melanoma$ulcer) 
     0  1 
  0 79 47 
  1 36 43 
 
# run a two-sided, two-sample chi-squared test 
chisq.test(table(melanoma$sex, melanoma$ulcer)) 
 Pearson's Chi-squared test 
 
data:  table(melanoma$sex, melanoma$ulcer) 
X-squared = 5.7845, df = 1, p-value = 0.01617 

 
The output of the two-sided, two-sample chi-squared test for ulcer indication vs. sex 
computes a p-value of 0.0162. Since the p-value is less than the significance level of 𝛼𝛼 =
0.05, we reject the null hypothesis and conclude that there exists a difference in the 
proportion of ulcer indication between males and females.  
 
 
4.5 Population Means of Two or More Groupings 
 
The t-test can be used for tests involving one or two groups. Using a t-test for three groups 
or more would involve a comparison of group 1 vs. group 2, group 1 vs. group 3, and 
group 2 vs. group 3, individually. The number of t-tests would increase exponentially with 
more groups. The one-way ANOVA test is a solution. The test determines if any group 
is different from the rest of the groups. ANOVA stands for Analysis of Variance because 
it compares the variance of any group against the overall variance between groups. The 
test statistic is the F-value.  
 
The assumptions for a one-way ANOVA test are 10: 
 

1. Observations are independent 
2. Observations are randomly sampled from their populations 
3. The response variable in each group is approximately normal 
4. The variance of the response variable is equal in all the groups 

a. This assumption is often unrealistic. Although the results of ANOVA are not 
severely affected if the groups variances are moderately different, simple 
data transformations can help to stabilize the variance. Alternatively, a 

The output of the two-sided, two-sample 
chi-squared test for ulcer indication vs. sex 
computes a p-value of 0.0162. Since the 
p-value is less than the significance level 
of α=0.05, we reject the null hypothesis and 
conclude that there exists a difference in the 
proportion of ulcer indication between ma-
les and females. 

4.5 Population Means of Two or More 
Groupings

The t-test can be used for tests involving 
one or two groups. Using a t-test for three 
groups or more would involve a comparison 
of group 1 vs. group 2, group 1 vs. group 3, 
and group 2 vs. group 3, individually. The 
number of t-tests would increase exponen-
tially with more groups. The one-way ANO-
VA test is a solution. The test determines if 
any group is different from the rest of the 
groups. ANOVA stands for Analysis of Va-
riance because it compares the variance of 
any group against the overall variance be-
tween groups. The test statistic is the F-va-
lue. 

The assumptions for a one-way ANOVA test 
are10:

1. Observations are independent.

2. Observations are randomly sampled 
from their populations.

3. The response variable in each group is 
approximately normal.

4. The variance of the response variable is 
equal in all the groups.

a) This assumption is often unrealistic. 
Although the results of ANOVA are not 
severely affected if the groups varian-
ces are moderately different, simple 
data transformations can help to stabi-
lize the variance. Alternatively, a modifi-
cation of ANOVA can be used when as-
suming unequal variances (not covered 
in this paper).

Here we illustrate an ANOVA test comparing 
age within each survival status (1 = died 
from melanoma, 2 = still alive, 3 = died from 
causes other than melanoma). We test if the-
re exists a mean age difference between the 
three status groups. Let  µ1, µ2 , and µ3 re-
present the population mean age for status 
groups 1, 2, and 3, respectively. We define 
the null and alternative hypotheses as:

H0: µ1 = µ2 = µ3. The mean age is the same 
between all three status groups.

HA: µ1 ≠ µ2 or µ1 ≠ µ3 or µ2 ≠ µ3. The mean 
age of at least one status group is different 
from the age of the other status groups.

Zhao I, Velasco MC



MetroCiencia  VOL. 30 Nº 1 (2022) 9595

 

modification of ANOVA can be used when assuming unequal variances (not 
covered in this paper). 

 
Here we illustrate an ANOVA test comparing age within each survival status (1 = died 
from melanoma, 2 = still alive, 3 = died from causes other than melanoma). We test if 
there exists a mean age difference between the three status groups. Let  µ1, µ2 , and µ3 

represent the population mean age for status groups 1, 2, and 3, respectively. We define 
the null and alternative hypotheses as: 
 
H0: µ1 = µ2 = µ3. The mean age is the same between all three status groups. 
HA: µ1 ≠ µ2 or µ1 ≠ µ3 or µ2 ≠ µ3. The mean age of at least one status group is different 
from the age of the other status groups. 
 

# run a one-way ANOVA test 
summary(aov(age ~ status, data = melanoma)) 
 
                     Df   Sum Sq    Mean Sq   F value   Pr(>F)    
status             2        3503       1751.3        6.65   0.0016 ** 
Residuals   202      53198         263.4                   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 
The one-way ANOVA test is run in R with the aov function. We use the summary function 
to obtain a detailed output that includes the p-value. In the example we see an F-value of 
6.65 and a p-value of 0.0016. Since the p-value is less than the significance level of 𝛼𝛼 =
0.05, we can conclude that there is a difference in mean age between the status groups. 
 
 
6. Conclusion 
 
Interpretations of hypothesis testing methods are often reduced to whether the p-value 
passes a certain threshold to claim statistical significance. However, as the ASA's 
statement on p-values asserts, “Practices that reduce data analysis or scientific inference 
to mechanical “bright-line” rules (such as “p < 0.05”) for justifying scientific claims or 
conclusions can lead to erroneous beliefs and poor decision making” 11. Indeed, 
statistical assertions based on such concepts distort the scientific process by failing to 
incorporate into the analysis the model assumptions, the overall statistical method, and 
all the results relating to the research question. Data analysis should not end with the 
calculation of a p-value when other approaches are appropriate and feasible 11. Rather 

The one-way ANOVA test is run in R with the 
aov function. We use the summary function 
to obtain a detailed output that includes the 
p-value. In the example we see an F-value 
of 6.65 and a p-value of 0.0016. Since the 
p-value is less than the significance level 
of α=0.05, we can conclude that there is a 
difference in mean age between the status 
groups.

6. CONCLUSION

Interpretations of hypothesis testing me-
thods are often reduced to whether the 
p-value passes a certain threshold to claim 
statistical significance. However, as the 
ASA's statement on p-values asserts, “Prac-
tices that reduce data analysis or scientific 
inference to mechanical “bright-line” rules 
(such as “p < 0.05”) for justifying scienti-
fic claims or conclusions can lead to erro-
neous beliefs and poor decision making”11. 
Indeed, statistical assertions based on such 
concepts distort the scientific process by 
failing to incorporate into the analysis the 
model assumptions, the overall statistical 
method, and all the results relating to the 
research question. Data analysis should not 
end with the calculation of a p-value when 
other approaches are appropriate and fea-
sible11. Rather than focusing on individual 
findings, authors must disclose all the sta-
tistical analyses they run, even if the results 
are not statistically significant. 

Greenland et al. assert that the estimation of 
the size of an association and the uncertainty 
around the estimate could be more relevant 
for scientific inference than arbitrary classifi-

cations on significance6. Note that a p-value 
does not measure the size of an association 
or the importance of a result11. Smaller p-va-
lues do not necessarily imply larger or more 
important effects and larger p-values do not 
necessarily imply unimportant associations 
or lack of effects. P-values are sensitive to 
the sample size. Hence, a large sample size 
may produce small p-values even when as-
sociations are not meaningful and vice ver-
sa. Additionally, given that p-values are ba-
sed on the study assumptions, any violation 
of the protocol would invalidate any conclu-
sion of statistical significance6. Therefore, 
p-values without context or other evidence 
are not enough. 

Given the limitations and widespread mi-
sinterpretations of p-values, a few scienti-
fic journals now discourage their use and 
a few statisticians recommend their aban-
donment. Some alternatives to p-values that 
have been previously mentioned in literature 
are methods like confidence intervals, Ba-
yes factors, and practical significance. Ne-
vertheless, as statisticians Gelman and Car-
lin state, these replacements are also faulty 
because they still try to “get near-certainty 
out of noisy estimates” by using a summary 
statistic or threshold5. They suggest the use 
of larger, more informative models as alter-
natives to hypothesis testing and p-values. 
Such models require Bayesian inference 
or non-Bayesian regularization techniques 
such as Lasso to estimate continuous para-
meters. Although these alternative methods 
pose a great challenge to statistical pedago-
gy given their complexity, they highlight the 
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“need to move toward a greater acceptance 
of uncertainty and embracing of variation”5. 
Evidence-based data analysis should be 
the ultimate goal. Education that reinforces 
good statistical practice is vital to improve 
the quality of published research. 
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