Hypothesis Testing

Autores/as

DOI:

https://doi.org/10.47464/MetroCiencia/vol30/1/2022/83-96

Palabras clave:

hypothesis testing, p-value, statistical significance, z-test, t-test, ANOVA, chi-squared, f-test, correlation coefficient

Resumen

The present paper is a practical guide on hypothesis testing. It covers various statistical inference methods that are widely applied in research studies. To avoid narrowing down statistical problems to p-values, we discuss common misuses and misinterpretations of statistical tests and emphasize the importance of interpreting results in the context of the study design, previous knowledge, and complementary analyses. We provide a toolkit that reinforces good scientific practice.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Maria Carolina Velasco, Latin American Center for Clinical Research

Latin American Center for Clinical Research. Quito - Ecuador

Isaac Zhao, Worcester Polytechnic Institute

Worcester Polytechnic Institute. Worcester, MA - United States.

Citas

Andersen PK, Borgan O, Gill RD, Keiding N. Survival from malignant melanoma. R Package boot: Bootstrap R (S-Plus) Functions. 1993. [cited 2022 Jan 17]. Available from: https://stat.ethz.ch/R-manual/R-patched/library/boot/html/melanoma.html

cancer.net [Internet]. Melanoma: Diagnosis; 2020 [cited 2022 Jan 27]. Available from: https://www.cancer.net/cancer-types/melanoma/diagnosis.

Dalgaard P. Introductory Statistics with R. New York: Springer; 2008. p. 95-106.

Gauvreau K. Hypothesis testing proportions. Circulation. 2006;114:1545–1548. doi: 10.1161/CIRCULATIONAHA.105.586487

Gelman A, Carlin J. Some natural solutions to the p-value communication problem— and why they won’t work. Journal of the American Statistical Association. 2017;112(519):899–901. doi: 10.1080/01621459.2017.1311263

Greenland S, Senn SJ, Rothman KJ, Carlin JB, Poole C, Goodman SN, et al. Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. Eur J Epidemiol 31. 2016. p. 337–350. doi: 10.1007/s10654-016-0149-3

Kim TK. T test as a parametric statistic. Korean J Anesthesiol. 2015;68(6):540–546. doi: 10.4097/kjae.2015.68.6.540

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria; 2021. [cited 2021 Aug 17]. Available from: https://www.R-project.org/.

Schober P, Boer C, Schwarte, LA. Correlation Coefficients: Appropriate use and interpretation. Anesthesia & Analgesia. 2018;126(5):1763–1768 doi: 10.1213/ANE.0000000000002864

Shahbaba B. Biostatistics with R: An introduction to statistics through biological data. New York: Springer; 2012. p. 173–228.

Wasserstein RL, Lazar NA. The ASA statement on p-Values: Context, process, and purpose. The American Statistician. 2016;70(2):129-133. doi: 10.1080/00031305.2016.1154108

Publicado

2022-03-31

Cómo citar

Velasco, M. C., & Zhao, I. (2022). Hypothesis Testing. Metro Ciencia, 30(1), 83–96. https://doi.org/10.47464/MetroCiencia/vol30/1/2022/83-96

Número

Sección

Artículos Originales - Estadística al Día